b value in Seismology ============================ The b value probability density function ----------------------------------------------- The Gutenberg-Richter law (GR Law) [1]_ describes the relationship between earthquake quanities and earthquake magnitudes with the following relationship .. math:: log[N(M)] = a - bM where **N** denotes earthquake quantity with magnitudes no less than **M**, **a** and **b** are two constants. The above equation could be written as, .. math:: N(M) = 10^{a-bM} which is a cumulative distritbuion function (CDF). Differentiate and normalize the CDF function can give the probability distribution function (PDF). The differentiation process is .. math:: \begin{align} \frac{dN}{dM}&=(10^{a-bM})'\\ &=(-b)\ln(10)10^{a-bM} \end{align} The PDF function increases from :math:`M_{max}` to :math:`M_{min}`, which leads to a negative value, therefore, the negative sign should be removed. For an earthquake catalog with a magnitude range of :math:`[M_{min},M_{max}]`, the total earthquake quantity :math:`N_{total}=10^{a-bM_{min}}-10^{a-b{M_{max}}}`, the normalization process gives the probability density function (PDF) .. math:: \begin{align} f(M) &= (b)\ln(10)\frac{10^{a-bM}}{10^{a-bM_{min}}-10^{a-b{M_{max}}}}\\ &= b\ln(10)\frac{10^{-bM}}{10^{-bM_{min}}-10^{-b{M_{max}}}} \end{align} Maximum likelihood estimation ----------------------------------- By ignoring the :math:`M_{max}` conponent, which is a small value if :math:`M_{max}>>M_{min}`, the PDF function could be written as .. math:: \begin{align} f(M,b)&=\frac{b}{\log_{10}e}e^{\frac{-b}{\log_{10}e}(M-M_0)}\\ f(M,b')&=b'e^{-b'(M-M_0)} \end{align} where :math:`b'={b}/{\log_{10}e}`. We define two parameters, .. math:: \begin{align} y_i&=\frac{\partial}{\partial{b'}}\log f(M_i,b')\\ Y&=\sum_{i=1}^ny_i \end{align} For a large :math:`n` value, the distributionf of :math:`Y` will be Gaussian. The mean value of :math:`y_i` is 0 because .. math:: \begin{align} E(y)=\int_{M_0}^\infty yf(M,b')dM&=\int_{M_0}^\infty (1+M_0b'-Mb')e^{-b'(M-M_0)}dM\\ &=\int_{M_0}^\infty M_0b'e^{-b'(M-M_0)} dM +\int_{M_0}^\infty (1-Mb')e^{-b'(M-M_0)}dM\\ &=\int_{M_0}^\infty -M_0de^{-b'(M-M_0)} +\int_{M_0}^\infty dMe^{-b'(M-M_0)}\\ &=(0-(-M_0)) +(0-M_0)\\ &=0 \end{align} Therefore, for :math:`Y`, we have .. math:: E(Y)=E(\sum_{i=1}^ny_if(M_i,b'))=0 We then can get .. math:: \begin{align} 0&=\sum_{i=1}^{n}(\frac{1}{b'}+M_0-M_i)\\ &=\frac{n}{b'}+nM_0-\sum_{i=1}^{n}M_i\\ b'&=\frac{1}{\sum{M_i}/n-M_0} \end{align} Using the relationship :math:`b=b'\log_{10}e` we can get the *b* value. The standard error ~~~~~~~~~~~~~~~~~~~~~~~~ The variance of :math:`y'` could be obtained by .. math:: E(y^2)=\int_{M_0}^{\infty}y^2f(M,b')dM=\int_{M_0}^{\infty}(1+M_0-M)^2e^{-b'(M-M0)}dM=\frac{1}{b'^2} References --------------------------------- .. [1] Gutenberg, B. and C. Richter (1954). *Seismicity of the Earth and Associated Phenomena*, 2nd Edition, pp. 310. .. [2] Aki, Keiiti (1965). *17. Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence Limits*. Bulletin of the Earthquake Research Institude