Stress analysis ========================== Mohr circle ------------------------- The mohr circle quantifies the relationship between normal stress, shear stress, and rock failure. Here I present the deriviation process. .. figure:: ./Mohr_deriviation.jpg :align: center Stress distribution on a slope plane (Zeng et al., 2008, Structural Geology, Third edition) The stable condition will requires below two conditions: :math:`\sum{F_n}=0` and :math:`\sum{F_\tau}=0`, whcih corresponds to the normal and shear stress equilibrium. Therefore, .. math:: \sigma A_{\theta} - \sigma_1\cos\theta A_{\theta}\cos\theta - \sigma_2\sin\theta A_{\theta}\sin\theta = 0 .. math:: \tau A_{\theta} + \sigma_2\cos\theta A_{\theta}\sin\theta - \sigma_1\sin\theta A\theta\cos\theta = 0 Then we have: .. math:: \begin{align} \sigma &= \sigma_1\cos^2\theta + \sigma_2\sin^2\theta \\ &=\sigma_1\frac{1+\cos{2\theta}}{2} + \sigma_2\frac{1-\cos{2\theta}}{2}\\ &=\frac{\sigma_1+\sigma_2}{2}+\frac{\sigma_1-\sigma_2}{2}\cos\theta \end{align} .. math:: \begin{align} \tau &= (\sigma_1-\sigma_2)\cos\theta\sin\theta \\ &= \frac{\sigma_1 - \sigma_2}{2}\sin{2\theta} \end{align} Finally, we then have the relationship between (effective) normal stress and shear stress: .. math:: (\sigma - \frac{\sigma_1+\sigma_2}{2})^2+\tau^2 = (\frac{\sigma_1-\sigma_2}{2})^2